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Ahsiract The specmm of fluctuations around the flux density wave ‘staircase’ stales of 
the Gustrated XY-model of Josephson junction arrays is studied for rational values of the 
Rux per plaquette, f = pip.  The swcture of lhe Brillouin lone is discussed and the 
reduced eigenvalue equation for lhe Hessian matrix derived. The eigenvalue equation is 
studied analytically in lwo repions: (i) the mne boundary and (ii) the mne centre for 
the lowest band; in various limits as p + m. Numerical diagonalization is employed 
for a sequence of values of f and the band S ~ N C ~ U ~ ~ S  and densities of slates calculated. 
The simple harmonic approximation is modified to include the strong anisotropy of the 
states and is shown to explain the lowst band density of stales well at low energy. 

1. Introduction 

The frustrated XY-model [I-31 has been widely used to describe the statistical me- 
chanics of arrays of Josephson junctions and weak links such as artificial and natural 
granular superconductors and, most recently, sintered high temperature superconduo 
tors [4,5]. In this paper I will consider the excitations around a set of (metapable 
states of the model in two dimensions and in the absence of disorder, so the major 
experimental consequences are likely to be in the area of artificial arrays where the 
fluctuation spectra calculated here may well be obsemble via microwave absorption. 

The rationality of the number of flux quanta, f ,  threading a unit cell of the array 
is a very important factor in the physics of these systems. For example, the graph 
of the network critical temperature versus f would be a very ramified, fractal line. 
Experimentally of course this ramification is only seen down to an energy scale set 
by the unavoidable disorder in the system. This dependence on the rationality of the 
flux is shared with the problem of the electronic states of a non-interacthg gas of 
two-dimensional Bloch electrons in a strong magnetic field [q. Halsey [7] constructed 
a set of states which extremize the Hamiltonian of the model and referred to them 
as ‘staircase’ states because of their structure. If one considers the self-consistent 
effect of the frozen-in supercurrents on the local magnetic field, then the state can 
be thought of as a flux density wave. The state is believed to be the ground state 
of the model for 1/3 < f < 2/3 at least for q not too large. The flux density 
wave has, in addition to the obvious U( 1) degeneracy due to the invariance of the 
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Hamiltonian under global phase rotations, an additional 2, x 2, degeneracy from the 
invariance under reflection in one of the lattice axes and from the invariance under 
translation by up to q- 1 steps (transIation by q steps maps the state onto inself). The 
fluctuations considered here will contribute to the low temperature properties of the 
system but there will be additional contributions from domain wall excitations between 
different, degenerate, states, as well as the excitation of vortex-antivortex pairs as in 
the conventional XY-model. The energetics of domain wall excitations will be the 
subject of a future paper. Much previous work on this subject has concentrated 
on the particularly simple case f = 1/2 [8-12]. A simple quasi-one-dimensionaI 
version [13,14] has also been studied. The states can be constructed for any f = p/q 
but the details of the spectra will depend strongly on p and q separately. 

The fluctuations around the flux density wave will be descnied in terms of the 
eigenvalues of the Hessian, or stability matrix. The symmetries of the state allow 
the application of Bloch's theorem to the Hessian, leading to the labelling of the 
eigenvalues by a wavevcctor taking values in an anisotropic Brillouin zone and a 
q-valued band index The reduced equation for the eigenvalues at fixed wavevector 
can be thought of as the tight-binding Schr6dinger equation for a cyclic chain of 
q a t o m  with position dependent site energies and hopping elements. Analysis of 
the eigenvalues near the zone boundary is particularly simple and consists of simple 
quantum mechanical perturbation theory. Near the zone centre the behaviour of 
the lowest band can be analysed, particularly in the asymptotic limit p,q + 00: 

p = p(q), by using the transfer matrix formalism [15]. This lowest band behaviour at 
the zone centre gives rise to an anisotropic harmonic approximation w(E) - I C .  r .  E, 
where r is the helicity modulus tensor, expected to be valid for low energies. Exact 
numerical diagonalization of the reduced Hessian leads to detailed pictures of the 
band-structure and density of states for particular values of f = p/q which bear 
comparison with the analytic work. We shall be concerned with a sequence of values 
of f: fk = k / ( 2 k  + 1) which, for k > 1 are in the regime in which the flux density 
wave is believed to be the ground state. The eigenvalue equation is a generalization 
of Harper's equation [16] and extension to weakly irrational values of f could be 
performed using the WKB method of Wilkmon [17]. 

The rest of this paper is arranged as follows. In section two the model will be 
described in detail, in section three the flux density wave state will be described, the 
Hessian matrix derived and its reduction via Bloch's theorem discussed. Section four 
contains the results of exact diagonalization of the reduced Hessian for representative 
values from the sequence fk. Section five contains the analysis of the eigenvalues at 
the zone boundary, section six describes the behaviour of the lowest band at the zone 
centre and the harmonic approximation. Finally section seven contains a summary 
and discussion. 

2. The frustrated XY-model 

Consider a grain of superconducting material embedded in a normal matrix. Below 
the bulk transition of the superconductor (which will of course be strongly rounded 
out by finite size effects) there will be a non-zero value of the complex order pa- 
rameter: ~ = pi8, Thermal fluctuations in the amplitude, p, will be resisted by 
an effective restoring force (in the language of field theory they are massive), while 
fluctuations in the phase angle, 6, corresponding to the Goldstone mode of the bulk 
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transition, will be completely free. Now consider a regular array of such grains with 
large intergrain separations. The amplitudes on each grain will be approximately the 
same but the phases, 6,, will fluctuate in time and vary randomly from one grain to 
another. If the spacing of the grains is now made very much smaller, then tunnelling 
between different grains becomes possible; the effect of tunnelling (either the Joseph- 
son effect if the matrix is an insulator or the proximity effect if the matrix is a normal 
metal) is to favour phase coherence between grains. From the theory of Josephson 
junctions we can write down an effective free energy for the phase fluctuations of the 
form 

This is the Hamiltonian for the normal XY-model (albeit with a temperature- 
dependent coupling constant). Consequently we can expect the system to have an 
additional phase transition at which the network orders (either long range ordering of 
the phases if the space dimensionality is three or algebraic order in two dimensions). 
Such effects have been observed both in artificial granular materials and wire arrays 
and in samples of sintered YBa2Cu,07. If an external magnetic field h is applied 
to the array then the form of this free energy is modified by the replacement of the 
phase difference by the gauge-invariant quantity +i,j = Qi - Qj - Ai,j, where the 
twist, A, is defined as 

a0 is the appropriate flux quantum and the vector potential satisfies 

V x A = B = h -  gM (2.3) 

where B is the local magnetic field and M is the circulation of current around 
the plaquette which is proportional to the local magnetization. It is conventional 
to neglect the self-consistent aspect of this problem, i.e. to set g = 0. Preliminary 
numerical evidence suggests that this is not a serious omission if one is looking at 
ground state properties of the array (indeed in real arrays of N 5 p m  diameter with 
f = 1/2 it has the numerical value g - IO-’ [16]), but it seems quite liely that 
this may be very misleading in the study of, for example, the network critical current. 
Since we will be dealing entirely with small fluctuations around the ground state we 
will also make this approximation. 

From now on we will restrict attention to a system consisting of a two-dimensional 
square lattice of grains It is straightfonvard to see that the sum of the twists around 
an elementary plaquette, a, of the lattice is given by 

where f, = @-/ao is the flux through the plaquette in units of the flux qauntum. 
It is also the case that f is a measure of the frustration on a plaquette. If f is an 
integer then the twist around the plaquette adds up to a whole number of complete 
rotations and can be gauged away: the energy associated with each bond of the lattice 
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can be minimized simultaneously; if f is not an integer then this cannot be done and 
the plaquette is frustrated 

The current Rowing across a junction is given by the expression 

(25) 
2e 

1i.j = ~ J ( T ) s h ( 4 i , j )  

and we therefore identify 2eJ(T) /h  with the critical current of the single bond. If 
f is not an integer then no configuration exists in which all the phase differences are 
zero and therefore any state, including the ground state, has currents Rowing. 

be an extremum of the Hamiltonian 
H is that 

The condition that a phase configuration 

that is, Kirchoff's law is satisfied at each node of the network In all of the following 
we shall be considering the system at zero temperature and so the coupling constant 
will be J = J ( 0 ) .  

P l p n  B 1. The stairease strmturc shawing the assignment of bonds to a unique staircase 

and the cumnl  flows in the flux density wave state. 

3. The flux density wave state 

HaIsey ['7l constructs the flux density wave state explicitly in terms of the phase 
angles, B,,  here we only require the values of the gauge-invariant phase differences, 
bid. n e  construction is based on the assignment of each bond of the lattice to a 
unique smucase (see figure 1). The state is constructed such that the current is the 
same on each bond of a given staircase, which automatically fulfills equation (26). 
We shall refer to a lattice site by its coordinates I, y and define the phase differences 

4& = &,y;r-t,y 4:,y = 4s,y;=,Y-l. 

The staircase form entails the relations 



Fluctuations in the frustrated XY-model 5959 

Plgurr 2 An ckmenlary plaqueltc of Ihe lattice labelled [z, g]. 

in order that the state constructed be a minimum we shall require that the phase 
differences all lie in the interval - r / 2  < 4 < r / 2  and so we can set 

(3.3) Y -  4:,y = vz-y bXVY - ' p , - , t 1  

Consider the plaquette shown in figure 2; the sum of the gauge invariant phase 
differences around the plaquette must equal the sum of the twist factors (the 8s 
cancel pairwise) and so 

where k is an integer chosen to bring (0 into the correct interval. The energy of the 
state is then minimized with respect to the phase, 'po, yielding the result (cf [7] for 
details) 

q even 
q odd. P o  = 

For example, in the case f = 1/3 the phase differences are: 'po = 0, pl = n / 3  
and (oa = -r/3; while in the case f = 215 they are ~p,, = 0, 'pl = 2 r / S ,  
'p, = - r / S ,  'ps = r/S and (p4 = - 2 r / S .  Equivalent but distinct states can be 
formed by (i) global rotation of all the phase angles, (U) reflection in the y-axis and 
(i) translation by 1 ,2 . .  . q - 1 lattice spacings in the y-direction. Hence the state 
has a U(1) x 2, x 2, degeneracy (for q > 2). The energy per grain of the flux 
density wave state of a system of size L x L is given by 

J L L  2 5  ' E = -- 
LZ C{w~(4: ,~)  + W4Z,,)} = -- C A i  

x=1 y=1 q k l  

= -2JL+(q) /q  (3.7) 
where A, =  COS(^^) and Lt is defined as the sum of the q Ais. 

ure 2 is given by 
The magnetization produced by the supercurrens in the plaquette ( z , y )  of fig- 
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I 

Figom 3. The shape of the Brillouin zone for fluctualions around lhe f = p f q  flux 
density wave slate showing Iwo cunslrlnl (low) energy cum. 

the flux density is therefore modulated perpendicular to the staircase as 

where Qo is the flux quantum. It is straightforward to find the Hessian matrix: 

(3.10) 

The eigenvalue equation for the Hessian has the form 

M=,y;z',y'"d,y' = W V q y  

01 
W 

Azty{22Jz,y - V,-l,y - %y-ll 4- A,tyt,12v,,, -w ,+ l ,y  -vs ,yt l }  = p'y. 
(3.11) 

The periodicity of the Hessian allows the use of Bloch's theorem to express the 
eigenfunctions in the form 

where the wavevector k takes values in the anisotropic Brillouin zone shown in 
figure 3. with 

E I-r/2,rl21 k ,  E [-r/2q,r/2ql (3.13) 

and the Bloch function C has period q and satisfies the reduced equation 

(Ai +Ait l )@'  - IZ'A~C!:', - zzAit1C$', = ~ A ( v ) ( ~ , z ) C ~ " )  (3.14) 

where I = cos(kll), z = e ib l  and v is a q-valued band index The energy 
w ( k l l , k L )  = Jh(cos(k ) ,cos(k , ) )  is then a q-branched function defined on the 
~riltouin zone of figure Y. 
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The case f = 1/2 is easily solvable for all points in the Brillouin zone. The 
phase differences are (o, = x/4 and 'p, = -x/4 hence A, = 1/fi Vx. The 
Bloch equation has the form 

where q = cos(k,) = i(z + 2'). Hence 

which has solutions 

W(k, l 'kL)  = 2&(1 &coS(kll)coS(kL)). 

On quite general grounds we know that, near the zone centre, the lowest band 
will correspond to the Goldstone modes of the network ordering transition and the 
eigenvalue w(')(O, 0) will be zero since it corresponds to global rotations of the phase 
angles. 

4. Exact diagonalization for finite Q 

The reduced Hessian is a q x q Hermitian matrix which can be diagonalized using 
standard numerical methods. This has been done for a number of values of f from 
the sequence fk = k / ( 2 k  + 1). Some of the results are shown in figures 4 to 8. 

Figure 4 shows sections of the dispersion w ( k )  along three lines in the Brillouin 
zone for f = 3/7. The left hand graph of figure 5 is a close-up of the region near the 
XII point along the k, = 0 lie. Notable features of these band structures include 
the fact that at kll = ~ / 2  w is independent of kL, that w ( k )  is relatively flatter in 
the kL direction than in the kII direction at the mne centre, and that the middle 
band is exceedingly flat. 

8 1  I I 

XP r X I  w K 

Flpm 4. Sections of the energy surfams along three lines of the Brillouin zone for the 
case f = 317. 
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Figure 5. The varialion of lhe eigenvalues close to lhe mne boundary. (a) aac l  
numerical result, (b) given ty m n d  order penurtation thmry for f = 419, 6 = ?r/ZO. 

Figure 6. The density of statcs of the Hessian 
matrix for f = 3 f?, 0 indicates the positions of 
the energy lmla at the XI,, + the energy levels 
at r. at f. 

Flgure 7. The density of stales of lhe Hessian 
matrix for f = 4 f9, indicates the positions of 
the energy levels 81 the X I I ,  + (he energy lewis 

Figures 6 and 7 show the density of states of the Hessian for the cases f = 3/7 
and f = 4/9 respectively while figure 8 shows a close up of the low energy (0 < 
w < 0.1.J) density of states for the case f = 4/9. The most striking features of 
the graphs 6 and 7 are the abundance of peaks in the spectrum, including one very 
pronounced peak close to the centre of the energy range. At low energy two regimes 
are obvious: at the very lowest energy the density of states is a constant, as one might 
exepect for a twodimensional system, but above some value of w it drops off in a 
way that one normally associates with a onedimensional system p(w)  

The complete flatness of the bands at the short zone boundary clearly is the 
cause of the peaks in the density of states in the middle of the energy range while the 
extreme flatness of the middle band at all points in the zone is responsible for the 
very large central peak. The remaining sections of the paper will discuss the flatness 
at the zone boundary and the reason for the 2DnD crossover which will be seen to be 
responsible for the peaks in the density of states at the extremes of the energy range. 

w - l / ' .  
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5. Behan’our at the zone bound- 

The reduced eigenvalue equation (3.14) can be thought of as the tight-binding 
Schdinger  equation for a particle on a cyclic chain of q sites with one localized 
state per site corresponding to the Hamiltonian H = Ho + +V where 

P 

where I = m ( k I l )  and z = eikl .  The Schrijdinger equation then has the form 
( i lHl+)  = iA( i l+ )  where A = w / J .  At the ’short’ zone boundary ICII = ?r/2 so 
1: = 0 and the Hamiltonian (4.1) is diagonal with eigenstates 

Holi) = ( A ;  + A;+1)li)- (54 
For f = A/(% + 1) the Ais are given by 

(5.3) 

which satisfy the relation Ai = Azktl-i. The state Ik) is non-degenerate in both 
cases and has energy Xo(0) = 4Ak,  while all the other states are two-fold degenerate 
with states I IC + i) and Ik - i )  having energies X’(0) = 2(Akti + Akti t , ) .  The 
ordering of the energy levels depends on both p and q, for p = 1, q = 2k + 1 the 
singlet Ik) is the lowest level and the doublet lkf i) is the ith pair from the bottom. 
In the case of interest: p = k, q = 2 k +  1 the ordering is more complex and depends 
on the panty of k. 

The local behaviour near k! = “2 can be found using second-order degenerate 
perturbation theory with the fo l o w g  results. 

Xo (x) - 2[2Ak - B~x’]  x + 0 

X’-(x) - 2 [ ( A k t ,  +A,,*) + BktZ.’] 

X ” ( X )  - 2[(Ak+i + A d  + (Bktz - 2 B ~ t i ) + 2 1  

- 0 

+ O 

x -4 0 

(5.4) 

Xi*(+) - 2[(A,+j +A,+;+,) + ( Bh+itl - B&r2] 
Xk* (x) - 2 [ ( A ,  + 1) f x + BizZ] 
where 

i = 2 , 3 , .  . . , k- 1 
+ -+ 0 

and x = c o ~ ( k , ~ ) .  
This analysls has shed some light on the band structure close to the zone boundary. 

It is clear that, to second order in X, the eigenvalues are independent of z and hence 
k, as observed in figure 4. This lack of k, dependence and the fact that there are 
no O(Z) terms leads to peaks in the density of states at the energies JX’(0) denoted 
by full circles (a) in figures 6 and 7. The fact that Xh(z) does have a term linear in 
+ is reflected in the fact that there is no peak associated with the energy J X k ( 0 ) .  
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6. Behaviour at the mne centre and the harmonic approximation 

The local behaviour of the lowest band at the mne centre is governed by the helicity 
modulus tensor, rp,u where p , v  E {11,1), which is defined by 

This leads to the harmonic approximation 

w(O)(k) - $kpI'p,vkv lkl + 0 .  (6.2) 

The helicity moduli are evaluated in [I with the results 

where L + ( g )  = l /Ai .  It is notable that the helicity 
moduli both depend on q only, not on p since different values of p merely permute 
the Ais. Asymptotically rll - 8/f f  and rl - 2rr/ h(g )  when q + CO. We can use 
this approximation to try and estimate the low energy density of States 

Ai and L - ( q )  = 

Because of the anisotropy of the zone there are two r6gimes depending on whether 
w is less than or greater than q = rlrr2/8q2 - */8dln(q) with q - CO. If 
w < % then the contour of contnbuting states is a closed ellipsoid (cf figure 3) 
and the fluctuations are two-dimensional in character, if w > q then the ellipsoid 
is truncated by the zone boundary at IC, = frr/2q and the behaviour starts to look 
more one-dimensional as seen in the exact results of section 4. Substituting the 
expression (6.2) into (6.4) and re-arranging gives 

m i n ( w , q  du  
(6.5) 

d W n  
P ( W )  = 

which yields 

For large w this has the asymptotic form 
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I 
0.00 0.02 0.04 0.08 0.011 0.10 

" 

4 1  

Figum 8. The lmv energy demily of states for f = 419: full curve, exact numerical 
result; broken curve. harmonic approximation 

The harmonic approximation for f=4/9, where = 0.025, is shown in figure 8 in 
comparison with the exact low energy density of states. 

This approximation is of course only valid for w < w(')(O,O).  We can find 
an upper bound on this, the bottom of the next band up, as follows. The zero 
mode corresponding to w@)(O) is Cj = l/fi, we therefore use the trial state 
Cj = ( l / f i ) e i j r / g ,  which is exact for f = 0: taking the expectation value of the 
reduced Hessian, H of (S.l), at the zone centre in this state gives an upper bound on 
the bottom of the first band up 

For large q this gives w(')  4 4 r / q .  
This behaviour is not confined to the lowest band, it o a r s  for all of them, which 

explains the remaining peaks in the densities of states of figures 6 and 7 which are 
marked by + signs. 

7. Discussion 

It has been shown that the fluctuation spectra of the frustrated X Y  model around 
the flux density wave states are rather complicated with many peaks associated with 
the fact that the bands are very flat in the k, direction and that many constant 
energy surfaces are cut by the long mne boundary leading to quasi-one-dimensional 
behaviour: the peaks can thus be thought of as van Hove singularities which are 
cut off by the small 20-like regions close to the band extrema. It is to be hoped 
that at least some of these features may be observable in artificial superconducting 
arrays, for example in microwave absorption experiments. The l i t  k + 00 for 
ked L of the sequences studied clearly represents an incommensurate system (the 
sequence fk = p L / q k  : p k  = qkrz,qk 5: qkW1 + qk-2 which generates successive 
rational approximants to the irrational number 1 - g, where g is the golden mean 
g = 1/(1 + g), would be of more interest in this case) but it is not at all clear that 
for q larger than a certain value the flux density wave is the ground state and it is 
even less clear that the fluctuation ana@& presented above has any meaning since 
for a true incommensurate system q > L and there are no points sampled off the 
k, axis. 
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